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Coinductive data types are used in functional programming to represent infinite data struc-
tures. Examples include the ubiquitous data type of streams over a given base type, but also
more sophisticated types.

From a categorical perspective, coinductive types are characterized by a universal property,
which specifies the object with that property uniquely in a suitable sense. More precisely,
a coinductive type is specified as the terminal coalgebra of a suitable endofunctor. In this
category-theoretic viewpoint, coinductive types are dual to inductive types, which are defined
as initial algebras.

Inductive, resp. coinductive, types are usually considered in the principled form of the family
of W-types, resp. M-types, parametrized by a type A and a dependent type family B over A,
that is, a family of types (B(a))a:A. Intuitively, the elements of the coinductive type M(A,B)
are trees with nodes labeled by elements of A such that a node labeled by a : A has B(a)-many
subtrees, given by a map B(a) → M(A,B); see Figure 1 for an example. The inductive type
W(A,B) contains only trees where any path within that tree eventually leads to a leaf, that is,
to a node a : A such that B(a) is empty.
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Figure 1: Example of a tree (adapted from [7])

The present work takes place in intensional Martin-Löf type theory extended by Voevodsky’s
Univalence Axiom. We show that, in this type theory, coinductive types in the form of M-types
can be derived from inductive types. (More precisely, only one specific W-type is needed: the
type of natural numbers, which is readily specified as a W-type [4].) Indeed, given a signature
(A,B) specifying a shape of trees as described above, we construct the M-type associated to
that signature and prove its universal property. The construction can be seen as a higher-
categorical analogue of the classical construction of the terminal coalgebra of some endofunctor
as the limit of a chain.
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The result presented in this work is not surprising: indeed, the constructibility of coinductive
types from inductive types has been shown in extensional type theory (that is, type theory with
identity reflection) [7, 1], as well as in type theory satisfying Axiom K [3]. It was conjectured
to work in homotopy type theory, that is, the type theory described in [6], during a discussion
on the HoTT mailing list [5].

We have formalized our results in the proof assistant Agda.
The theorem we prove here is actually more general than described above: instead of plain

M-types as described above, we construct indexed M-types, which can be considered as a form
of “simply-typed” trees, typed over a type of indices I. Plain M-types then correspond to the
mono-typed indexed M-types, that is, to those for which I = 1.

The details of this work are described in an article [2]. The source code and HTML documen-
tation of the Agda formalization can be downloaded from https://hott.github.io/M-types/.
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