Displayed categories

Benedikt Ahrens¹

joint work with Peter LeFanu Lumsdaine²

¹Inria, France ²Stockholm University

- 2 Displayed category theory
- **3** Fibrations and comprehension categories

4 Univalence

1 Goals and background

- 2 Displayed category theory
- 3 Fibrations and comprehension categories
- 4 Univalence
- G Creation of limits

Context

- Open problem: Initiality conjecture for dependently typed theories
 - 1. Develop notion of 'signature' for type theories
 - 2. Construct initial model for any signature
- Project with Peter Lumsdaine and Vladimir Voevodsky: *Comparing categorical structures for type theory*
 - Categories with families
 - Type categories
 - Categories with display maps
 - Comprehension categories

and formalize results in (univalent) type theory.

Displayed categories help with two challenges encountered in this project.

Goals

Displayed categories help with two challenges:

Avoid reasoning about equality of objects of categories Equality of objects used in classical formulations of several concepts:

- (Grothendieck) fibrations
- Creation of limits

Build categories of complex structures step-wise

- Toy example: category of groups from category of sets + extra structure
- Specifically: mathematical status for extra structure

Logical setting

Type theory with different possible interpretations naïve: types interpreted as sets univalent: types interpreted as simplicial sets

Some issues and results trivialize in naïve interpretation

- Transport along equalities
- Results on univalent categories

Type-theoretical background

- Type theory with Σ , Π , =, 0, 1, 2, **N**, U
- Type *A* is **contractible** if has a unique inhabitant
- Type *A* is a **proposition** if all inhabitants are equal
- Type *A* is a **set** if all its identity types a = a' are propositions

Results do not rely on univalence or Axiom K

Formalization

- Many of the results formalized, based on the UniMath library
- Available on https://github.com/UniMath/TypeTheory
- Ca. 5000 loc

Categories

- A category ${\mathscr C}$ is
 - a type \mathscr{C}_{o} of objects
 - for any two objects $a, b : \mathscr{C}_0$, a **set** $a \to b$ of arrows
 - for any $a : \mathscr{C}_{o}$, an arrow $1_a : a \to a$
 - composition: $(a \rightarrow b) \times (b \rightarrow c) \longrightarrow (a \rightarrow c)$, denoted $f \cdot g$
 - axioms postulating identities of arrows

Categories

A univalent category ${\mathscr C}$ is

- a type \mathscr{C}_o of objects
- for any two objects $a, b : \mathscr{C}_0$, a set $a \to b$ of arrows
- for any $a : \mathscr{C}_{o}$, an arrow $1_a : a \to a$
- composition: $(a \rightarrow b) \times (b \rightarrow c) \longrightarrow (a \rightarrow c)$, denoted $f \cdot g$
- axioms postulating identities of arrows
- such that the map

$$\mathsf{idtoiso}: \prod_{a,b:\mathscr{C}_0} \bigl((a=b) \to \mathsf{lso}(a,b) \bigr)$$

is an equivalence 'pointwise', i.e., for any $a,b:\mathscr{C}_{\mathrm{o}},$

$$\mathsf{idtoiso}_{a,b}: a = b \xrightarrow{\simeq} \mathsf{lso}(a,b)$$

2 Displayed category theory

3 Fibrations and comprehension categories

4 Univalence

G Creation of limits

Displayed categories

Given a category ${\mathscr C},$ a **displayed category** ${\mathscr D}$ **over** ${\mathscr C}$ consists of

- for each $c : \mathscr{C}$, a type \mathscr{D}_c
- for each $f : a \to b$ of \mathscr{C} and $x : \mathscr{D}_a$ and $y : \mathscr{D}_b$, a **set** hom_{*f*}(x, y)
- for each $c : \mathscr{C}$ and $x : \mathscr{D}_c$, a morphism $\mathbf{1}_x : \hom_{\mathbf{1}_c}(x, x)$
- for all $f : a \to b$ and $g : b \to c$ in \mathscr{C} and $x : \mathscr{D}_a$ and $y : \mathscr{D}_b$ and $z : \mathscr{D}_c$, a function

 (\cdot) : hom_f(x,y) × hom_g(y,z) → hom_{f·g}(x,z),

denoted by $(\bar{f}, \bar{g}) \mapsto \bar{f} \cdot \bar{g} : \hom_{f \cdot g}(x, z)$

• laws—well-typed modulo axioms of *C*

Total category of a displayed category

The **total category** $\int \mathscr{D}$ of \mathscr{D} over \mathscr{C}

- objects are pairs (a, x) where $a : \mathscr{C}$ and $x : \mathscr{D}_a$
- maps $(a, x) \rightarrow (b, y)$ are pairs (f, \overline{f}) where $f : a \rightarrow b$ and $\overline{f} : \hom_f(x, y)$

Forgetful functor

$$\pi_1^{\mathscr{D}}: \int \mathscr{D} \to \mathscr{C}$$

Displayed categories over $\mathscr C$ are the same as 'a category and a functor into $\mathscr C$ '.

Examples

The **category of groups** is the total category of the displayed category grp, over set:

- grp_X := set of group structures on the set X
- for a function $f : X \to Y$ and group structures (μ, e) on X and (μ', e') on Y,

 $\hom_f((\mu,e),(\mu',e')):=$

f is a homorphism with respect to $(\mu, e), (\mu', e')$

Similarly for category of topological spaces.

More examples

- Any category is displayed over 1.
- Given a predicate $P: \mathcal{C}_0 \to \text{type}$, setting $\mathcal{D}_c := P(c)$ and $\hom_f(x, y) = 1$ yields

 $\int \mathcal{D} =$ full subcategory spanned by *P*

- If every displayed hom-set hom_f(x, y) of 𝔅 is a proposition (inhabited, contractible) then π₁: ∫𝔅 → 𝔅 is faithful (full, fully faithful).
- Total category of displayed (co)slice category is arrow category

$$\mathscr{C}^{\rightarrow} \simeq \int_{c:\mathscr{C}} \mathscr{C}/c \simeq \int_{c:\mathscr{C}} c \backslash \mathscr{C}$$

but the π_1 's are different.

Displayed functors

Let $F : \mathscr{C} \to \mathscr{C}'$ be a functor, and \mathscr{D} over \mathscr{C} and \mathscr{D}' over \mathscr{C}' . A **(displayed) functor** *G* **from** \mathscr{D} **to** \mathscr{D}' **over** *F* consists of:

• for each $c : \mathcal{C}$, a map

$$G_c: \mathscr{D}_c \to \mathscr{D}'_{Fc}$$

• for each
$$f : c \to c'$$
 in \mathscr{C} , a map

$$\hom_f(x,y) \to \hom_{Ff}(Gx,Gy)$$

• dependent analogues of the usual functor laws Induces **total functor** $\int G : \int \mathcal{D} \to \int \mathcal{D}'$ commuting with the forgetful functors.

Displayed *X* over *X* in the base, inducing *X* of total categories

For X being

- natural transformations
- adjunctions
- equivalences

In particular,

 displayed category of displayed functors from 𝔅 to 𝔅' over category of functors from 𝔅 to 𝔅'

Fibre categories

Given \mathcal{D} over \mathcal{C} and *c* an object of \mathcal{C} , define **fibre category** \mathcal{D}_c

- $(\mathscr{D}_c)_{o} := \mathscr{D}_c$
- $hom(x,y) := hom_{1_c}(x,y)$

But: displayed X do not generally restrict to X on fibres, requires well-behaved displayed category \mathcal{D}

- 1 Goals and background
- 2 Displayed category theory
- **3** Fibrations and comprehension categories
- 4 Univalence
- G Creation of limits

Fibrations

Definition (cartesian lift, classically)

Given $F : \mathcal{D} \to \mathcal{C}$ and $f : c' \to c$ in \mathcal{C} and $d : \mathcal{D}_o$ such that Fd = c, a cartesian lift of (f, d) is an object $d' : \mathcal{D}_o$ with Fd' = c' and a cartesian map $f' : d' \to d$ with Ff' = f.

Definition (cartesian lift in terms of displayed categories)

Given \mathcal{D} a displayed category over \mathcal{C} and $f : c' \to c$ in \mathcal{C} and $d : \mathcal{D}_c$, a cartesian lift of (f, d) is an object $d' : \mathcal{D}_{c'}$ and a cartesian map $\overline{f} : \hom_f(d', d)$.

A **fibration** is a displayed category with a cartesian lift for any $f : c' \rightarrow c$ and $d : \mathcal{D}_c$.

Comprehension categories

Definition (comprehension category, classically)

Definition (comprehension category via displayed categories)

- a fibration (in particular, displayed category) \mathcal{T} over \mathscr{C}
- a displayed functor $\mathcal{T} \to \mathcal{C}/-$ over identity functor on \mathcal{C}

Induces a strictly commuting triangle of functors

- 1 Goals and background
- 2 Displayed category theory
- 3 Fibrations and comprehension categories

4 Univalence

Univalent displayed categories

- Given D over C and i : c ≃ c' in C, write lso_i(d, d') for type of displayed isomorphisms
- For e: c = c' and $d: \mathcal{D}_c$ and $d': \mathcal{D}_{c'}$,

$$\mathsf{idtoiso}_{e,d,d'}: (d =_e d') \to \mathsf{lso}_{\mathsf{idtoiso}(e)}(d,d')$$

 Call D (displayedly) univalent if idtoiso_{e,d,d'} is an equivalence for all e, d, d'.

Lemma

 ${\mathcal D}$ displayedly univalent iff all fibre categories ${\mathcal D}_c$ univalent

Structure Identity Principle

Theorem

Given \mathcal{D} over \mathcal{C} , if \mathcal{C} is univalent and \mathcal{D} is (displayedly) univalent, then $\int \mathcal{D}$ is univalent.

- Gives a modular way to show that categories of complicated structures are univalent.
- Structure Identity Principle (Aczel, Coquand & Danielsson) is a special case.

- 1 Goals and background
- 2 Displayed category theory
- 3 Fibrations and comprehension categories
- 4 Univalence

Creation of limits

Definition (classically)

A functor $F : \mathcal{A} \to \mathcal{B}$ **creates limits** of shape *I* if for any diagram $D : I \to \mathcal{A}$

- for any limit cone $C : \underline{B} \to FD$ on diagram *FD* there is a unique cone $C' : \underline{A} \to D$ such that F(C') = C
- *C*′ is limit cone for *D*

Definition (in terms of displayed categories)

Let \mathcal{D} be a displayed category over \mathcal{C} and I a category. We say that \mathcal{D} creates limits of shape I if . . .

A displayed category \mathcal{D} over a category \mathcal{C} creates limits (of shape *I*) if and only the functor $\pi_1^{\mathcal{D}} : \int \mathcal{D} \to \mathcal{C}$ creates limits (of shape *I*) in the classical sense.

Creation of limits II

Lemma

Suppose the category \mathscr{C} has limits of shape I, and the displayed category \mathscr{D} over \mathscr{C} creates limits of shape I. Then $\int \mathscr{D}$ has all such limits, and $\pi_1^{\mathscr{D}} : \int \mathscr{D} \to \mathscr{C}$ preserves them.

Examples

- Given $F : \mathcal{C} \to \mathcal{C}$, the displayed category of *F*-algebras over \mathcal{C} creates limits. Same for monad algebras.
- The displayed category of groups over sets creates limits.

Future work

- Develop notion of *displayed limit* encompassing and generalizing the creation of limits
- Assemble displayed categories into a *displayed bicategory over the bicategory of categories*
- Displayed categories form a sort of 2-dimensional 'category with display maps', with displayed categories over & being the 'types in context &' w directed type theory

Future work

- Develop notion of *displayed limit* encompassing and generalizing the creation of limits
- Assemble displayed categories into a *displayed bicategory over the bicategory of categories*
- Displayed categories form a sort of 2-dimensional 'category with display maps', with displayed categories over & being the 'types in context &' w directed type theory

Thanks for your attention!