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Univalent Foundations

Univalent Foundations a.k.a. Homotopy Type Theory

e is type theory with a semantics in spaces
e comes with an additional axiom compared to MLTT

¢ provides a synthetic way to do homotopy theory

Most importantly (for me)

Univalent Foundations captures

reasoning modulo “indistinguishability”.



Motivation: equality = indistinguishability

In type theory, equal objects { = t’ are indistinguishable

e we cannot define a predicate P such that P(t) and not P(t')

e ensured by substitution principle

subst : (t =t') x P(t) — P(t)

Conversely, are indistinguishable objects equal in type theory?

¢ no generic internal notion of indistinguishability

e for some types we have an intuition about what should be
indistinguishable



Indistinguishability for functions and types

When are two functions indistinguishable?

~+ when they are indistinguishable on any input!
¢ “indistinguishability = equality” requires axiom of
functional extensionality

When are two types indistinguishable?

~+ when they are isomorphic!

e “indistinguishability = equality” requires univalence
axiom



About indistinguishable categories

In this talk

define a notion of category in type theory for which

indistinguishability = equality

When are two categories C and D indistinguishable?

g VX, Ix = gx
B A~B
D
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3 kinds of sameness for categories

Equality

I
O 99

C
Isomorphism C
C
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Equivalence

e most properties of categories invariant under equivalence
e we can only substitute equals for equals

e in set-theoretic foundations these notions are worlds apart

In this talk:

Define categories in the Univalent Foundations for which all
three coincide
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Univalent Foundations

What are the Univalent Foundations?

e Intensional Martin-Lof Type Theory
~~ Types as Spaces interpretation, i.e. Homotopy Type Theory

+ Voevodsky’s Univalence Axiom




Martin-Lof TT and its Homotopy Interpretation

Type theory Notation Interpretation

Inhabitant a:A ais a point in space A

Dependent type x: At B(x) fibration }_ .4 B(x) = A

Sigma type > oxaB(Xx) total space of a fibration
Product type [L,.4B(x) space of sections of a fibration
Coproduct type A+ B disjoint union

Identity type Ida(a, b) space of paths p: a~ b

e other types as needed (type N of naturals, empty type)



Interpretation: identity type as path space

e For two terms a, b : A of a type A, there is a type Id(a, b)
e terms p, g : Id(a, b) are interpreted as paths p,g: a~» b

Mixing syntax and semantics

e Call aterm p: Id(a, b) a “path from ato b”, writep: @~ b
e Say aand b are homotopic if thereis a path p: a ~ b.



The homotopy interpretation of identity types

Interpretation of the operations on paths:

Type theory Interpretation Notation
refl constant path on a refl(a)
inverse path reversal p~!
concat path concatenation pxq
higher identity type paths between paths p~~==>q

“continuous deformations”
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Curry-Howard: propositions as some types

Definition (Proposition in UF)

A type Ais a proposition if all its inhabitants are homotopic, ie.
if one can construct a term of type

isProp(A) := [ ][] 1da(x. y)

xX:A y:A

e “Being a proposition” is a proposition, ie. one can prove

isProp(isProp(A))

e Intuitively, a proposition is either empty or a singleton.



Quantification in UF

Vx : A.P(x)

[1,.4 P(x) is a proposition if P(x) is a proposition for any x



Quantification in UF

Vx : A.P(x)

[L.4 P(x) is a proposition if P(x) is a proposition for any x

dx : A.P(x)
> .4 P(x) is not a proposition even if P(x) is for any x

e Example: > .nq€ven(n)

e Truncation necessary to obtain a proposition



Sets in Univalent Foundations

Definition (Sets)

Type Ais a set if the type ld4(x, y) is a proposition for any x, y

isSet(A) := [ isProp(ld(x, ))
X y:A

e Points of a set are equal in a unique way, if they are.
e Sets are precisely those types satisfying UIP / Axiom K.

e Sets correspond to discrete spaces.



About the use of the word “unique”

Definition
We call the point & : A unique if any point x : Ais homotopic to
g, ie. if we can construct a term of type

[T 1d(x a)
X:A



About the use of the word “unique”

Definition
We call the point & : A unique if any point x : Ais homotopic to
g, ie. if we can construct a term of type

[T 1d(x a)
X:A

A type Awith a unique point a : Ais called “contractible”:
Definition

We call A contractible if we can construct a term of type

isContr(A) := > [] d(x.a)

(a:A) (x:A)



Homotopy levels

Homotopy levels: the complete picture

isContr(A Z H Id(x, a)

(aA) (x:A)
isProp(A) := [ isContr(ld(x, y))
X,y:A
isSet(A) := [ isProp(ld(x, y))
X,y:A

isofhlevel,1(A) := H isofhlevel,(1d(x, y))
X,y:A

But we will not need the higher levels.
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Idea of Univalence : isomorphic types are equal

Types are stratified in universes

¢ have a sequence of universes (Up)ncn (a la Russell)
* auniverse !{ is a type

e any type Ais a point of some universe A : U

e What does Id;/(A, B) look like?

Univalence: 1d;/(A, B) = (A= B)

e Idea: any path p : Id(A, B) corresponds to an isomorphism
p:A=B

e impose this correspondance as an axiom



Isomorphism of types

Definition (Isomorphism of types)

A function f : A — Bis an isomorphism of types if there are

g:B— A

0 H d(g(f(a)).a) e H 1d(7(g(b)),b)

together with a coherence condition 7 : [],.,Id (f(nx), e(fx))



Isomorphism of types

Definition (Isomorphism of types)

A function f : A — Bis an isomorphism of types if there are

g:B— A

0 H d(g(f(a)).a) e H 1d(7(g(b)),b)

together with a coherence condition 7 : [[,.,Id (f(nx), e(fx))

..ie. if we can construct a term of type

islso(f):= > > Z H Id( ))

(9:B=A) (n:2) (e)



The type of isomorphisms

Lemma

Forany f: A — B, the type islso(f) is a proposition. In particular,
the inverse g is unique, if it exists.

Definition (Type of isomorphisms from A to B)

Iso(A, B) := > islso(f)
f:A—B

e There are other, equivalent definitions of islso(f).

e Isomorphisms of types are usually called “equivalences”.



Examples of isomorphic types

Example (Leibniz principle)

For any p : Id(a, b), the substitution function
subst, p(p) : C(a) — C(b)

is an isomorphism with inverse subst, o(p~").

e [True] is isomorphic to Nat

e propositions are isomorphic iff they are logically
equivalent



The elimination rule of the identity type

The Identity elimination rule says:
To define a function of type
II II cty.np
(x.y:A) (p:ld(x.y))

it suffices to specify its image on (X, x, refl(x)).



The Univalence Axiom

Definition (From paths to isomorphisms)

idtoiso : ] I1d(A, B) — Iso(A, B)
A,B:U
(A, A, refl(A)) — (Ax.x,_)

Univalence Axiom

univalence : [ islso(idtoisoa g)
A B:U

In particular, Univalence gives a map backwards:

isotoida g : Iso(A, B) — Id(A, B)



Consequences of Univalence

e Propositional extensionality
(P+ Q)—1d(P,Q)

¢ Function extensionality:

H Idg(fx, gx) — lda—B(f, 9)
X:A

and its dependent variant

e Quotient types exist (cf. later)
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Categories in Univalent Foundations — Take I

A naive definition of categories
A category C is given by
e atype Cp of objects
e forany a, b : Cy, a type C(a, b) of morphisms

e operations: identity & composition

id: [[ c(a,a)  (o): J] c(b,c)xc(ab)—C(ac)

a:Cy a,b,c:Cy
e axioms: unitality & associativity for any suitable £, g, h:

unital : [ (idpof~ f) x (foida~ f)
a,b:Cy,f:C(a,b)

assoc: [[ (hog)of~ ho(gof)
a,b,c,d,f,g,h



Coherence for associativity — Mac Lane’s pentagon

Problem with above definition: two ways to associate a
composition of four morphisms from left to right:

(ioh)o(gof)
((foh)og)of
E jo(ho(gor)

(fo(hog))of /
Ty

io((hog)of)



Coherence for associativity — Mac Lane’s pentagon

Problem with above definition: two ways to associate a
composition of four morphisms from left to right:

(ioh)o(gof)
((iloh)og)of
E jo(ho(gor)
(fo(hog))of /
T
io((hog)of)

Would need to ask for higher coherence ~~=> , aa=> etc



Categories in Univalent Foundations — Take II

Definition (Category in UF)

A category C is given by
e atype Cp of objects
e forany a,b: Cp, a C(a, b) of morphisms
e operations: identity & composition

e axioms: unitality & associativity

For this definition of category, all the postulated paths are
trivially coherent.



Isomorphism in a category

Definition (Isomorphism in a category)

A morphism f : C(a, b) is an isomorphism if there are

g:C(b,a)

n:gof~idg e:fog~idp
Put differently, we define

islso(f) := > <(go f~ida) x (fog~ idb)>
g:C(b,a)



Isomorphism in a category II

Lemma

Forany f : C(a, b), the type islso(f) is a proposition.

Definition (The type of isomorphisms)

Iso(a, b) := ) islso(f)

f:C(a,b)



What about categories as objects?

Definition (Functor)
A functor F from C to D is given by
e amap Fy:Cyp — Dy
e forany a,& : Cp,amap Fuy : C(a,d) — D(Fa, Fa)

e preserving identity and composition

The category of categories?

e the type of functors from C to D does not form a set

e thus there is no category of categories



Isomorphisms of categories

Definition (Isomorphism of categories)

A functor F is an isomorphism of categories if
e Fgis an isomorphism of types and

e F,4 is an isomorphism of types (a bijection) for any a, &,

islsoOfCats(F) := ( . ) x ( I1 )

a,a’:Cy



Isomorphism of categories II

Lemma

“Being an isomorphism of categories” is a proposition.

Definition (Type of isomorphisms of categories)

C=D:= ) islsoOfCats(F)
F:.C—D



Natural transformations

Definition (Natural transformation)

Let F, G : C — D be functors. A natural transformation
a: F — Gis given by

e forany a: Cy a morphism o : D(Fa, Ga) s.t.

e forany f:C(a,b), Gf o ag ~ apo Ff

The type of natural transformations F — G is a set.

Definition (Functor category D)

e objects: functors from C to D

e morphisms from F to G: natural transformations



Equivalence of categories

Definition (Left Adjoint)
A functor F : C — D is a left adjoint if there are
e G:D—C
e n:1c— GF
e c:FG—1p
e + higher coherence data.



Equivalence of categories

Definition (Equivalence of categories)

A left adjoint F is an equivalence of categories if 7 and € are
isomorphisms.

Lemma

“F is an equivalence” is a proposition.
Definition

C~D:= ) isEquivOfCats(F)
F:.C—D
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From paths to isomorphisms

Definition (From paths to isomorphisms, univalent categories)

For objects a, b : Cy we define

idtoiso,p : (@~ b) — Iso(a, b)
refl(a) — ida

We call the category C univalent if, for any objects a, b : Co,
idtoisoap : (@~ b) — Iso(a, b)

is an isomorphism of types.



About univalent categories

e In a univalent category, isomorphic objects are equal.
e “Cis univalent” is a proposition, written isUniv(C).

e Definition proposed by Hofmann & Streicher '98, but not
pursued




Examples of univalent categories

Set (follows from the Univalence Axiom)

e categories of algebraic structures (groups, rings,...)
e made precise by the Structure Identity Principle (P. Aczel)

tull subcategories of univalent categories

functor category DC, if D is univalent



Some more examples of univalent categories

e a preorder, considered as a category, is univalent iff it is
antisymmetric

e if X is of h-level 3, then there is a univalent category with
X as objects and hom(x, y) := (X ~ y)

e if C is univalent, then the category of cones of shape
F:J—Cis

~~ limits (limiting cones) in a univalent category are unique



Non-univalent categories

S ——

e more generally, any chaotic category C with C(x, y) := 1
unless Cj is contractible

e any chaotic category C with an object ¢ : Cy is equivalent
to the terminal category 1 := e

~~ a category can be equivalent to a univalent one without
being univalent itself



1 kind of sameness for univalent categories

Equality C~D
Isomorphism c=D
C~D

Equivalence

Theorem

For univalent categories C and D, these are isomorphic as types.

Consequence

Every property of univalent categories definable in UF is
invariant under equivalence.
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Rezk completion

e “Being univalent” is a proposition

~+ Inclusion from univalent categories to categories

Theorem

The inclusion of univalent categories into categories has a left adjoint
(in bicategorical sense),

C—C, the Rezk completion of C .



Rezk completion II

Any functor F : C — D with D univalent factors uniquely:

C nc é‘

éH!
VF :

D (univalent)

The functor 7¢ is the unit of the adjunction; it is
e fully faithful and

e essentially surjective.



Construction of the Rezk completion

o C:=full image subcat. of Set“” of Yoneda embedding

e (Cisunivalent

e letne:C — C be the Yoneda embedding (into CA):

o fully faithful
e essentially surjective (by definition)

e precomposition _o H : C8 — C*4 is an equivalence—and
hence an isomorphism—of categories if

e H is essentially surjective
e Cis univalent

e the object function thus is an isomorphism of types

_oH:(CP = (CY)o



Semantics of univalent categories

In Voevodsky’s SSET model,

e categories correspond to truncated Segal spaces

e univalent categories correspond to truncated complete
Segal spaces

Completion for Segal spaces was studied by Rezk:




Special case of Rezk completion: Quotienting

Specialise: category ~~ groupoid ~+ equivalence relation
Theorem (Univalent Foundations admits quotients)

Anymap f: S — Rsuch that s ~ ' = f(s) ~ f(s') factors
uniquely via S:

S_ " .3

%Ei!

,5

e More direct construction of set-level quotients by
Voevodsky: “type of equivalence classes”



Another example: the classifying space of a group

e Consider group G as category with one element
¢ B(G) := classifying space, ie. the space such that
QB(G) =G

e Construction of B(G) as space of torsors is actually the
process of Rezk completion

e Directly formalized in UF by Dan Grayson




Mechanization in Coq

Rezk Completion mechanized in Coq+UA+TypelnType

e approx. 4000 lines of code

e based on Voevodsky’s library “Foundations”

Design choices for the implementation

e Goal: make maths in UF accessible for mathematicians
~+ stick to that part of syntax with clear semantics

e Restriction to basic type constructors ([, >_,...)
e Coercions and notations as in mathematical practice

e No automation: no type classes, no automatic tactics



Towards higher categories

¢ no internal definition of co-categories

e 2 possible paths to higher categories:
¢ “manual” definition of n-categories for low n

e bootstrapping via enrichment in n-categories
Requires notion/theory of

e enriched category theory and univalence

e truncation of higher categories



Future work 11

e Makkai: FOLDS (First Order Logic with Dependent Sorts)
as foundation for category theory

e Goal: only invariant properties definable (no equality on
objects)

e FOLDS embeds in type theory

e Suggested by Shulman: compare definition of univalent
categories in FOLDS style to the one above
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A model of MLTT in simplicial sets

Types-as-spaces intuition is made precise by a model of MLTT:

e The category sSET of simplicial sets is Quillen-equivalent
to the category TOP of topological spaces.

e There is a model of MLTT in simplicial sets (Voevodsky).
e This model satisfies an additional property: univalence

¢ This suggests adding univalence as an additional axiom
(UA) to MLTT.

Remark

Traditional set-theoretic models of MLTT do not satisfy
univalence and thus are not models of MLTT + UA.



The groupoid interpretation of MLTT

Hofmann & Streicher: independence of UIP

Given a type A, one can not construct a term of type

II I ‘'duexerefi(x)

(x:A) (p:ld(x,x))




Non-trivial loop spaces

Interpretation of Hofmann & Streicher’s result

It is (equi-)consistent to have a type A with non-trivial path
spaces, e.g. a punctured disk.

D




Truncation

Propositional truncation

e to any type A associate type ||A]|
¢ ||A||4 is a proposition

e ||Al|; indicates whether A is inhabited or not, we have
A= |Ally - —A=SllAlL

e dn: Nat, even(n) o= HZn:Nat even(n)H1



Truncation

Propositional truncation

e to any type A associate type ||A]|
¢ ||A||4 is a proposition

e ||Al|; indicates whether A is inhabited or not, we have
A= |Ally - —A=SllAlL

e dn: Nat, even(n) o= HZn:Nat even(n)H1

Truncation to homotopy level n

e similar truncation can be defined for any n, A — || A||,

e ||Al|, has only trivial paths above level n



Equivalent definitions of isomorphism

Logically equivalent definition:

e One possible 7 can be deduced from g, n and €
~ suffices to give g, n and e to prove that f is an isomorphism

But the type of triples (g, 7, €) is not a proposition

Several equivalent definitions of isomorphism:

¢ “having a left- and a right-handed inverse”

e “having contractible fibers”, i.e. inverse image of each
point is a singleton
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