Category theory in the Univalent Foundations

Benedikt Ahrens

joint work with Krzysztof Kapulkin and Michael Shulman

Séminaire LDP, I2M, Marseille

Univalent Foundations

Univalent Foundations a.k.a. Homotopy Type Theory

- is type theory with a semantics in spaces
- comes with an additional axiom compared to MLTT
- provides a **synthetic** way to do homotopy theory

Most importantly (for me)

Univalent Foundations captures

reasoning modulo "indistinguishability".

Motivation: equality = indistinguishability

In type theory, equal objects t = t' are indistinguishable

- we cannot define a predicate P such that P(t) and not P(t')
- ensured by substitution principle

$$\mathsf{subst}: (t=t') \times P(t) \to P(t')$$

Conversely, are indistinguishable objects equal in type theory?

- no generic internal notion of indistinguishability
- for some types we have an intuition about what should be indistinguishable

Indistinguishability for functions and types

When are two functions indistinguishable?

- when they are indistinguishable on any input!
 - "indistinguishability = equality" requires axiom of functional extensionality

When are two types indistinguishable?

- → when they are isomorphic!
 - "indistinguishability = equality" requires univalence axiom

About indistinguishable categories

In this talk

define a notion of category in type theory for which

$$in distinguish ability = equality \\$$

When are two categories C and D indistinguishable?

$$f = g$$
 $\forall x, fx = gx$
 $A = B$ $A \simeq B$
 $C = D$???

3 kinds of sameness for categories

Equality	C = D
Isomorphism	$\mathcal{C}\cong\mathcal{D}$
Equivalence	$\mathcal{C}\simeq\mathcal{D}$

- most properties of categories invariant under equivalence
- we can only substitute equals for equals
- in set-theoretic foundations these notions are worlds apart

In this talk:

Define categories in the **Univalent Foundations** for which all three coincide

Outline

1 Introduction to Univalent Foundations

Type theory and its homotopy interpretation Logic in type theory: homotopy levels The Univalence Axiom

2 Category Theory in Univalent Foundations

Categories: basic definitions Univalent categories: definition & some properties The Rezk completion

Table of Contents

1 Introduction to Univalent Foundations
Type theory and its homotopy interpretation
Logic in type theory: homotopy levels
The Univalence Axiom

2 Category Theory in Univalent Foundations Categories: basic definitions Univalent categories: definition & some properties The Rezk completion

Univalent Foundations

What are the Univalent Foundations?

- Intensional Martin-Löf Type Theory
- → Types as Spaces interpretation, i.e. Homotopy Type Theory
- + Voevodsky's Univalence Axiom

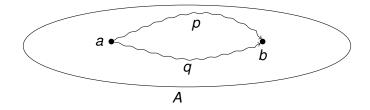
Martin-Löf TT and its Homotopy Interpretation

Type theory	Notation	Interpretation
Inhabitant	a : A	a is a point in space A
Dependent type	$x : A \vdash B(x)$	fibration $\sum_{(x:A)} B(x) \to A$
Sigma type	$\sum_{x:A} B(x)$	total space of a fibration
Product type	$\prod_{x:A} B(x)$	space of sections of a fibration
Coproduct type	A + B	disjoint union
Identity type	$\operatorname{Id}_A(a,b)$	space of paths $p: a \rightsquigarrow b$

- other types as needed (type ${\bf N}$ of naturals, empty type)

Interpretation: identity type as path space

- For two terms a, b : A of a type A, there is a type Id(a, b)
- terms p, q: Id(a, b) are interpreted as paths p, q: $a \rightsquigarrow b$



Mixing syntax and semantics

- Call a term p : Id(a, b) a "path from a to b", write $p : a \rightsquigarrow b$
- Say a and b are **homotopic** if there is a path $p : a \rightsquigarrow b$.

The homotopy interpretation of identity types

Interpretation of the operations on paths:

Type theory	Interpretation	Notation
refl	constant path on a	refl(a)
inverse	path reversal	p^{-1}
concat	path concatenation	p∗q
higher identity type	paths between paths	$p \approx p q$
	"continuous deformations"	

Table of Contents

Introduction to Univalent Foundations
 Type theory and its homotopy interpretation
 Logic in type theory: homotopy levels
 The Univalence Axiom

2 Category Theory in Univalent Foundations Categories: basic definitions Univalent categories: definition & some properties The Rezk completion

Curry-Howard: propositions as some types

Definition (Proposition in UF)

A type **A** is a **proposition** if all its inhabitants are homotopic, ie. if one can construct a term of type

$$isProp(A) := \prod_{x:A} \prod_{y:A} Id_A(x,y)$$
.

• "Being a proposition" is a proposition, ie. one can prove

• Intuitively, a proposition is either empty or a singleton.

Quantification in UF

 $\forall x : A.P(x)$

 $\prod_{x:A} P(x)$ is a proposition if P(x) is a proposition for any x

Quantification in UF

 $\forall x : A.P(x)$

 $\prod_{x:A} P(x)$ is a proposition if P(x) is a proposition for any x

 $\exists x : A.P(x)$

 $\sum_{x:A} P(x)$ is **not** a proposition even if P(x) is for any x

- Example: $\sum_{n:Nat} even(n)$
- Truncation necessary to obtain a proposition

Sets in Univalent Foundations

Definition (Sets)

Type *A* is a **set** if the type $Id_A(x, y)$ is a proposition for any x, y

$$isSet(A) := \prod_{x \ y:A} isProp(Id(x, y))$$

- Points of a set are equal in a unique way, if they are.
- Sets are precisely those types satisfying UIP / Axiom K.
- Sets correspond to **discrete spaces**.

About the use of the word "unique"

Definition

We call the point *a* : *A* unique if any point *x* : *A* is homotopic to *a*, ie. if we can construct a term of type

$$\prod_{x:A} \operatorname{Id}(x,a)$$

About the use of the word "unique"

Definition

We call the point *a* : *A* unique if any point *x* : *A* is homotopic to *a*, ie. if we can construct a term of type

$$\prod_{x:A} \operatorname{Id}(x,a)$$

A type *A* with a unique point *a* : *A* is called "contractible":

Definition

We call *A* contractible if we can construct a term of type

$$isContr(A) := \sum_{(a:A)} \prod_{(x:A)} Id(x, a)$$

Homotopy levels

Homotopy levels: the complete picture

$$\mathsf{isContr}(A) := \sum_{(a:A)} \prod_{(x:A)} \mathsf{Id}(x,a)$$
 $\mathsf{isProp}(A) := \prod_{x,y:A} \mathsf{isContr}(\mathsf{Id}(x,y))$
 $\mathsf{isSet}(A) := \prod_{x,y:A} \mathsf{isProp}(\mathsf{Id}(x,y))$
 \vdots
 $\mathsf{isofhlevel}_{n+1}(A) := \prod_{x,y:A} \mathsf{isofhlevel}_n(\mathsf{Id}(x,y))$

But we will not need the higher levels.

Table of Contents

1 Introduction to Univalent Foundations

Type theory and its homotopy interpretation Logic in type theory: homotopy levels

The Univalence Axiom

2 Category Theory in Univalent Foundations Categories: basic definitions Univalent categories: definition & some properties The Rezk completion

Idea of Univalence: isomorphic types are equal

Types are stratified in universes

- have a sequence of **universes** $(U_n)_{n\in\mathbb{N}}$ (à la Russell)
- a universe \mathcal{U} is a type
- any type A is a point of some universe A : \mathcal{U}
- What does $Id_{\mathcal{U}}(A, B)$ look like?

Univalence: $Id_{\mathcal{U}}(A, B) = (A \cong B)$

- Idea: any path p : Id(A, B) corresponds to an isomorphism $\bar{p} : A \xrightarrow{\sim} B$
- impose this correspondance as an axiom

Isomorphism of types

Definition (Isomorphism of types)

A function $f : A \rightarrow B$ is an **isomorphism of types** if there are

•

$$g:B\to A$$

•

$$\eta: \prod_{a:A} \operatorname{Id} \Big(g \big(f(a)\big), a\Big) \qquad \epsilon: \prod_{b:B} \operatorname{Id} \Big(f \big(g(b)\big), b\Big)$$

together with a coherence condition $\tau: \prod_{x:A} \mathsf{Id} \Big(f(\eta x), \epsilon(fx) \Big)$

Isomorphism of types

Definition (Isomorphism of types)

A function $f : A \rightarrow B$ is an **isomorphism of types** if there are

•

$$g:B\to A$$

•

$$\eta: \prod_{a:A} \operatorname{Id}\left(g(f(a)), a\right) \qquad \epsilon: \prod_{b:B} \operatorname{Id}\left(f(g(b)), b\right)$$

together with a coherence condition $\tau: \prod_{x:A} \mathsf{Id} \left(f(\eta x), \epsilon(fx) \right)$

...ie. if we can construct a term of type

$$\mathsf{islso}(f) := \sum_{(g:B \to A)} \sum_{(\eta:_)} \sum_{(\epsilon:_)} \prod_{(x:A)} \mathsf{Id}\Big(f(\eta x), \epsilon(f x)\Big)$$

The type of isomorphisms

Lemma

For any $f : A \rightarrow B$, the type islso(f) is a proposition. In particular, the inverse g is unique, if it exists.

Definition (Type of isomorphisms from A to B)

$$\mathsf{Iso}(A,B) := \sum_{f:A \to B} \mathsf{islso}(f)$$

- There are other, equivalent definitions of islso(*f*).
- Isomorphisms of types are usually called "equivalences".

Examples of isomorphic types

Example (Leibniz principle)

For any p : Id(a, b), the substitution function

$$\mathsf{subst}_{a,b}(p): C(a) \to C(b)$$

is an isomorphism with inverse $\operatorname{subst}_{b,a}(p^{-1})$.

- [True] is isomorphic to Nat
- propositions are isomorphic iff they are logically equivalent

The elimination rule of the identity type

The Identity elimination rule says:

To define a function of type

$$\prod_{(x,y:A)} \prod_{(p:\mathsf{Id}(x,y))} C(x,y,p)$$

it suffices to specify its image on (x, x, refl(x)).

The Univalence Axiom

Definition (From paths to isomorphisms)

idtoiso :
$$\prod_{A,B:\mathcal{U}} \operatorname{Id}(A,B) o \operatorname{Iso}(A,B)$$

 $(A,A,\operatorname{refl}(A)) \mapsto (\lambda x.x.)$

Univalence Axiom

univalence :
$$\prod_{A \ B:\mathcal{U}}$$
 islso(idtoiso_{A,B})

In particular, Univalence gives a map backwards:

$$\mathsf{isotoid}_{A,B} : \mathsf{Iso}(A,B) \to \mathsf{Id}(A,B)$$

Consequences of Univalence

Propositional extensionality

$$(P \leftrightarrow Q) \rightarrow \operatorname{Id}(P,Q)$$

• Function extensionality:

$$\prod_{x:A} \mathsf{Id}_B(fx,gx) \to \mathsf{Id}_{A\to B}(f,g)$$

and its dependent variant

• Quotient types exist (cf. later)

Table of Contents

Introduction to Univalent Foundations
 Type theory and its homotopy interpretation
 Logic in type theory: homotopy levels
 The Univalence Axiom

2 Category Theory in Univalent Foundations Categories: basic definitions Univalent categories: definition & some properties The Rezk completion

Categories in Univalent Foundations — Take I

A naïve definition of categories

A **category** C is given by

- a type C_0 of **objects**
- for any $a, b : C_0$, a type C(a, b) of morphisms
- operations: identity & composition

a,b,c,d,f,g,h

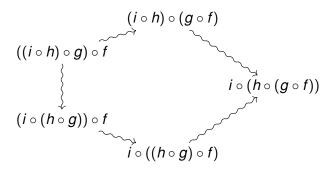
$$\mathsf{id}: \prod_{\boldsymbol{a}:\mathcal{C}_0} \mathcal{C}(\boldsymbol{a},\boldsymbol{a}) \qquad (\circ): \prod_{\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}:\mathcal{C}_0} \mathcal{C}(\boldsymbol{b},\boldsymbol{c}) \times \mathcal{C}(\boldsymbol{a},\boldsymbol{b}) \to \mathcal{C}(\boldsymbol{a},\boldsymbol{c})$$

• axioms: unitality & associativity for any suitable f, g, h:

$$\begin{aligned} & \text{unital}: \prod_{a,b:\mathcal{C}_0,f:\mathcal{C}(a,b)} (\mathsf{id}_b \circ f \leadsto f) \times (f \circ \mathsf{id}_a \leadsto f) \\ & \text{assoc}: \prod (h \circ g) \circ f \leadsto h \circ (g \circ f) \end{aligned}$$

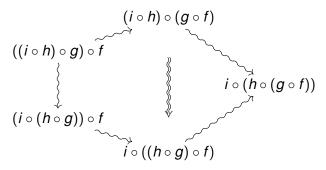
Coherence for associativity – Mac Lane's pentagon

Problem with above definition: two ways to associate a composition of **four** morphisms from left to right:



Coherence for associativity – Mac Lane's pentagon

Problem with above definition: two ways to associate a composition of **four** morphisms from left to right:



Would need to ask for higher coherence >>> , >>> etc

Categories in Univalent Foundations — Take II

Definition (Category in UF)

A **category** C is given by

- a type C_0 of objects
- for any $a, b : C_0$, a **set** C(a, b) of morphisms
- operations: identity & composition
- axioms: unitality & associativity

For this definition of category, all the postulated paths are trivially coherent.

Isomorphism in a category

Definition (Isomorphism in a category)

A morphism f : C(a, b) is an **isomorphism** if there are

•

$$g: \mathcal{C}(b, a)$$

•

$$\eta: g \circ f \leadsto \mathsf{id}_{a} \qquad \epsilon: f \circ g \leadsto \mathsf{id}_{b}$$

Put differently, we define

$$\mathsf{islso}(f) := \sum_{g: \mathcal{C}(b,a)} \left((g \circ f \leadsto \mathsf{id}_a) \times (f \circ g \leadsto \mathsf{id}_b) \right)$$

Isomorphism in a category II

Lemma

For any f : C(a, b), the type islso(f) is a proposition.

Definition (The type of isomorphisms)

$$lso(a,b) := \sum_{f:\mathcal{C}(a,b)} islso(f)$$

What about categories as objects?

Definition (Functor)

A **functor** F from C to D is given by

- a map $F_0: \mathcal{C}_0 \to \mathcal{D}_0$
- for any $a, a' : \mathcal{C}_0$, a map $F_{a,a'} : \mathcal{C}(a,a') \to \mathcal{D}(Fa,Fa')$
- preserving identity and composition

The category of categories?

- the type of functors from C to D does **not** form a set
- thus there is no category of categories

Isomorphisms of categories

Definition (Isomorphism of categories)

A functor *F* is an **isomorphism of categories** if

- F_0 is an isomorphism of types and
- $F_{a,a'}$ is an isomorphism of types (a bijection) for any a, a',

$$\mathsf{islsoOfCats}(F) := \left(\ldots\right) imes \left(\prod_{a,a':\mathcal{C}_0}\ldots\right)$$

Isomorphism of categories II

Lemma

"Being an isomorphism of categories" is a proposition.

Definition (Type of isomorphisms of categories)

$$\mathcal{C} \cong \mathcal{D} := \sum_{F:\mathcal{C} \to \mathcal{D}} \mathsf{islsoOfCats}(F)$$

Natural transformations

Definition (Natural transformation)

Let F, G : $C \to D$ be functors. A **natural transformation** α : $F \to G$ is given by

- for any $a : C_0$ a morphism $\alpha_a : \mathcal{D}(Fa, Ga)$ s.t.
- for any f : C(a, b), $Gf \circ \alpha_a \leadsto \alpha_b \circ Ff$

The type of natural transformations $F \rightarrow G$ is a **set**.

Definition (Functor category $\mathcal{D}^{\mathcal{C}}$)

- objects: functors from \mathcal{C} to \mathcal{D}
- morphisms from *F* to *G*: natural transformations

Equivalence of categories

Definition (Left Adjoint)

A functor $F : \mathcal{C} \to \mathcal{D}$ is a **left adjoint** if there are

- $G: \mathcal{D} \to \mathcal{C}$
- $\eta: 1_{\mathcal{C}} \to GF$
- $\epsilon: \textit{FG} \rightarrow 1_{\mathcal{D}}$
- + higher coherence data.

Equivalence of categories

Definition (Equivalence of categories)

A left adjoint F is an **equivalence of categories** if η and ϵ are isomorphisms.

Lemma

"F is an equivalence" is a proposition.

Definition

$$\mathcal{C} \simeq \mathcal{D} := \sum_{F:\mathcal{C} \to \mathcal{D}} \mathsf{isEquivOfCats}(F)$$

Table of Contents

Introduction to Univalent Foundations
 Type theory and its homotopy interpretation
 Logic in type theory: homotopy levels
 The Univalence Axiom

2 Category Theory in Univalent Foundations Categories: basic definitions Univalent categories: definition & some properties The Rezk completion

From paths to isomorphisms

Definition (From paths to isomorphisms, univalent categories)

For objects $a, b : C_0$ we define

$$\mathsf{idtoiso}_{a,b} : (a \leadsto b) \to \mathsf{Iso}(a,b)$$

 $\mathsf{refl}(a) \mapsto \mathsf{id}_a$

We call the category C **univalent** if, for any objects a, b: C_0 ,

$$\mathsf{idtoiso}_{a,b}:(a\leadsto b)\to \mathsf{Iso}(a,b)$$

is an isomorphism of types.

About univalent categories

- In a univalent category, isomorphic objects are equal.
- "C is univalent" is a proposition, written is Univ(C).
- Definition proposed by Hofmann & Streicher '98, but not pursued

Examples of univalent categories

- Set (follows from the Univalence Axiom)
- categories of algebraic structures (groups, rings,...)
 - made precise by the **Structure Identity Principle** (P. Aczel)
- full subcategories of univalent categories
- functor category $\mathcal{D}^{\mathcal{C}}$, if \mathcal{D} is univalent

Some more examples of univalent categories

- a preorder, considered as a category, is univalent iff it is antisymmetric
- if X is of h-level 3, then there is a univalent category with X as objects and $hom(x, y) := (x \rightsquigarrow y)$
- if C is univalent, then the category of cones of shape
 F: J → C is
 - → limits (limiting cones) in a univalent category are **unique**

Non-univalent categories

•

- more generally, any **chaotic** category C with C(x, y) := 1 unless C_0 is contractible
- any chaotic category C with an object c: C₀ is equivalent to the terminal category 1 :=
 - → a category can be equivalent to a univalent one without being univalent itself

1 kind of sameness for univalent categories

Equality $\mathcal{C} \leadsto \mathcal{D}$ Isomorphism $\mathcal{C} \cong \mathcal{D}$ Equivalence $\mathcal{C} \simeq \mathcal{D}$

Theorem

For *univalent* categories C and D, these are isomorphic as types.

Consequence

Every property of univalent categories definable in UF is **invariant under equivalence**.

Table of Contents

1 Introduction to Univalent Foundations
Type theory and its homotopy interpretation
Logic in type theory: homotopy levels
The Univalence Axiom

2 Category Theory in Univalent Foundations Categories: basic definitions Univalent categories: definition & some properties The Rezk completion

Rezk completion

- "Being univalent" is a proposition
- → Inclusion from univalent categories to categories

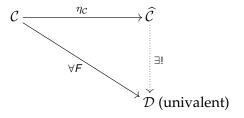
Theorem

The inclusion of univalent categories into categories has a left adjoint (in bicategorical sense),

$$\mathcal{C}\mapsto\widehat{\mathcal{C}},\qquad ext{the Rezk completion of }\mathcal{C}$$
 .

Rezk completion II

Any functor $F: \mathcal{C} \to \mathcal{D}$ with \mathcal{D} univalent factors uniquely:



The functor $\eta_{\mathcal{C}}$ is the unit of the adjunction; it is

- fully faithful and
- essentially surjective.

Construction of the Rezk completion

- \widehat{C} := full image subcat. of <u>Set</u>^{C^{op}} of **Yoneda embedding**
 - $\widehat{\mathcal{C}}$ is univalent
- let $\eta_{\mathcal{C}}: \mathcal{C} \to \widehat{\mathcal{C}}$ be the **Yoneda embedding** (into $\widehat{\mathcal{C}}$):
 - fully faithful
 - essentially surjective (by definition)
- precomposition $_ \circ H : \mathcal{C}^{\mathcal{B}} \to \mathcal{C}^{\mathcal{A}}$ is an equivalence—and hence an isomorphism—of categories if
 - *H* is essentially surjective
 - C is univalent
- the object function thus is an isomorphism of types

$$_ \circ H : (\mathcal{C}^{\mathcal{B}})_0 \to (\mathcal{C}^{\mathcal{A}})_0$$

Semantics of univalent categories

In Voevodsky's sSET model,

- categories correspond to truncated Segal spaces
- univalent categories correspond to truncated complete
 Segal spaces

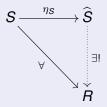
Completion for Segal spaces was studied by Rezk:

Special case of Rezk completion: Quotienting

Specialise: category → groupoid → equivalence relation

Theorem (Univalent Foundations admits quotients)

Any map $f: S \to R$ such that $s \sim s' \Longrightarrow f(s) \leadsto f(s')$ factors uniquely via \widehat{S} :



 More direct construction of set-level quotients by Voevodsky: "type of equivalence classes"

Another example: the classifying space of a group

- Consider group G as category with one element
- $\mathcal{B}(G)$:= classifying space, ie. the space such that

$$\Omega(\mathcal{B}(G)) = G$$

- Construction of $\mathcal{B}(G)$ as space of **torsors** is actually the process of Rezk completion
- Directly formalized in UF by Dan Grayson

Mechanization in Coq

Rezk Completion mechanized in Coq+UA+TypeInType

- approx. 4000 lines of code
- based on Voevodsky's library "Foundations"

Design choices for the implementation

- Goal: make maths in UF accessible for mathematicians
 - → stick to that part of syntax with clear semantics
- Restriction to basic type constructors $(\prod, \sum,...)$
- Coercions and notations as in mathematical practice
- No automation: no type classes, no automatic tactics

Future work

Towards higher categories

- no internal definition of ∞-categories
- 2 possible paths to higher categories:
 - "manual" definition of *n*-categories for low *n*
 - bootstrapping via enrichment in *n*-categories

Requires notion/theory of

- enriched category theory and univalence
- truncation of higher categories

Future work II

- Makkai: FOLDS (First Order Logic with Dependent Sorts) as foundation for category theory
- Goal: only invariant properties definable (no equality on objects)
- FOLDS embeds in type theory
- Suggested by Shulman: compare definition of univalent categories in FOLDS style to the one above

References

• Univalent Foundations program, *Homotopy Type Theory: Univalent Foundations of Mathematics*, 2013

- Hofmann, M. and Streicher, T., The groupid interpretation of type theory, 1996
- Rezk, C., A model for the homotopy theory of homotopy theory, 2001
- preprint arXiv:1303.0584

Some background ...

A model of MLTT in simplicial sets

Types-as-spaces intuition is made precise by a model of MLTT:

- The category **sSET** of simplicial sets is Quillen-equivalent to the category **TOP** of topological spaces.
- There is a model of MLTT in simplicial sets (Voevodsky).
- This model satisfies an additional property: univalence
- This suggests adding univalence as an additional axiom (UA) to MLTT.

Remark

Traditional set-theoretic models of MLTT do not satisfy univalence and thus are not models of MLTT + UA.

The groupoid interpretation of MLTT

Hofmann & Streicher: independence of UIP

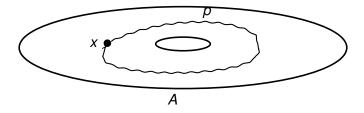
Given a type A, one can **not** construct a term of type

$$\prod_{(x:A)} \prod_{(\rho: \mathsf{Id}(x,x))} \mathsf{Id}_{\mathsf{Id}(x,x)}(\rho,\mathsf{refl}(x))$$

Non-trivial loop spaces

Interpretation of Hofmann & Streicher's result

It is (equi-)consistent to have a type **A** with non-trivial path spaces, e.g. a punctured disk.



Truncation

Propositional truncation

- to any type A associate type $||A||_1$
- $||A||_1$ is a proposition
- $||A||_1$ indicates whether A is inhabited or not, we have

$$A \rightarrow \|A\|_1 \qquad \neg A \rightarrow \neg \|A\|_1$$

• $\exists n : Nat, even(n) := \|\sum_{n:Nat} even(n)\|_1$

Truncation

Propositional truncation

- to any type A associate type $||A||_1$
- $||A||_1$ is a proposition
- $||A||_1$ indicates whether A is inhabited or not, we have

$$A \rightarrow \|A\|_1 \qquad \neg A \rightarrow \neg \|A\|_1$$

• $\exists n : Nat, even(n) := \|\sum_{n:Nat} even(n)\|_1$

Truncation to homotopy level *n*

- similar truncation can be defined for any n, $A \mapsto ||A||_n$
- $||A||_n$ has only trivial paths above level n

Equivalent definitions of isomorphism

Logically equivalent definition:

- One possible au can be deduced from \emph{g} , η and ϵ
- \leadsto suffices to give g, η and ϵ to prove that f is an isomorphism

But the type of triples (g, η, ϵ) is **not** a proposition

Several equivalent definitions of isomorphism:

- "having a left- and a right-handed inverse"
- "having contractible fibers", i.e. inverse image of each point is a singleton