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Univalent Foundations

Univalent Foundations a.k.a. Homotopy Type Theory

• is type theory with a semantics in spaces
• comes with an additional axiom compared to MLTT
• provides a synthetic way to do homotopy theory

Most importantly (for me)

Univalent Foundations captures

reasoning modulo “indistinguishability”.



Motivation: equality = indistinguishability

In type theory, equal objects t = t ′ are indistinguishable

• we cannot define a predicate P such that P(t) and not P(t ′)
• ensured by substitution principle

subst : (t = t ′)× P(t)→ P(t ′)

Conversely, are indistinguishable objects equal in type theory?

• no generic internal notion of indistinguishability
• for some types we have an intuition about what should be

indistinguishable



Indistinguishability for functions and types

When are two functions indistinguishable?

 when they are indistinguishable on any input!

• “indistinguishability = equality” requires axiom of
functional extensionality

When are two types indistinguishable?

 when they are isomorphic!

• “indistinguishability = equality” requires univalence
axiom



About indistinguishable categories

In this talk

define a notion of category in type theory for which

indistinguishability = equality

When are two categories C and D indistinguishable?

f = g ∀ x , fx = gx

A = B A ' B

C = D ???



3 kinds of sameness for categories

Equality C = D
Isomorphism C ∼= D
Equivalence C ' D

• most properties of categories invariant under equivalence
• we can only substitute equals for equals
• in set-theoretic foundations these notions are worlds apart

In this talk:

Define categories in the Univalent Foundations for which all
three coincide
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Univalent Foundations

What are the Univalent Foundations?

• Intensional Martin-Löf Type Theory

 Types as Spaces interpretation, i.e. Homotopy Type Theory

+ Voevodsky’s Univalence Axiom



Martin-Löf TT and its Homotopy Interpretation

Type theory Notation Interpretation

Inhabitant a : A a is a point in space A

Dependent type x : A ` B(x) fibration
∑

(x :A) B(x)→ A

Sigma type
∑

x :A B(x) total space of a fibration

Product type
∏

x :A B(x) space of sections of a fibration

Coproduct type A + B disjoint union

Identity type IdA(a,b) space of paths p : a b

• other types as needed (type N of naturals, empty type)



Interpretation: identity type as path space

• For two terms a,b : A of a type A, there is a type Id(a,b)

• terms p,q : Id(a,b) are interpreted as paths p,q : a b

A

a
b

p

q

Mixing syntax and semantics

• Call a term p : Id(a,b) a “path from a to b”, write p : a b
• Say a and b are homotopic if there is a path p : a b.



The homotopy interpretation of identity types

Interpretation of the operations on paths:

Type theory Interpretation Notation

refl constant path on a refl(a)

inverse path reversal p−1

concat path concatenation p ? q

higher identity type paths between paths p +3 q

“continuous deformations”
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Curry-Howard: propositions as some types

Definition (Proposition in UF)

A type A is a proposition if all its inhabitants are homotopic, ie.
if one can construct a term of type

isProp(A) :=
∏
x :A

∏
y :A

IdA(x , y) .

• “Being a proposition” is a proposition, ie. one can prove

isProp(isProp(A))

• Intuitively, a proposition is either empty or a singleton.



Quantification in UF

∀x : A.P(x)

∏
x :A P(x) is a proposition if P(x) is a proposition for any x

∃x : A.P(x)

∑
x :A P(x) is not a proposition even if P(x) is for any x

• Example:
∑

n:Nat even(n)

• Truncation necessary to obtain a proposition



Quantification in UF

∀x : A.P(x)

∏
x :A P(x) is a proposition if P(x) is a proposition for any x

∃x : A.P(x)

∑
x :A P(x) is not a proposition even if P(x) is for any x

• Example:
∑

n:Nat even(n)

• Truncation necessary to obtain a proposition



Sets in Univalent Foundations

Definition (Sets)

Type A is a set if the type IdA(x , y) is a proposition for any x , y

isSet(A) :=
∏

x y :A

isProp(Id(x , y))

• Points of a set are equal in a unique way, if they are.

• Sets are precisely those types satisfying UIP / Axiom K.

• Sets correspond to discrete spaces.



About the use of the word “unique”

Definition

We call the point a : A unique if any point x : A is homotopic to
a, ie. if we can construct a term of type∏

x :A

Id(x ,a)

A type A with a unique point a : A is called “contractible”:

Definition

We call A contractible if we can construct a term of type

isContr(A) :=
∑
(a:A)

∏
(x :A)

Id(x ,a)
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Homotopy levels

Homotopy levels: the complete picture

isContr(A) :=
∑
(a:A)

∏
(x :A)

Id(x ,a)

isProp(A) :=
∏

x ,y :A

isContr(Id(x , y))

isSet(A) :=
∏

x ,y :A

isProp(Id(x , y))

...

isofhleveln+1(A) :=
∏

x ,y :A

isofhleveln(Id(x , y))

But we will not need the higher levels.
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Idea of Univalence : isomorphic types are equal

Types are stratified in universes

• have a sequence of universes (Un)n∈N (à la Russell)

• a universe U is a type
• any type A is a point of some universe A : U
• What does IdU (A,B) look like?

Univalence: IdU (A,B) = (A ∼= B)

• Idea: any path p : Id(A,B) corresponds to an isomorphism
p̄ : A ∼−→ B

• impose this correspondance as an axiom



Isomorphism of types

Definition (Isomorphism of types)

A function f : A→ B is an isomorphism of types if there are

•
g : B → A

•
η :
∏
a:A

Id
(

g
(
f (a)

)
,a
)

ε :
∏
b:B

Id
(

f
(
g(b)

)
,b
)

together with a coherence condition τ :
∏

x :A Id
(

f (ηx), ε(fx)
)

. . . ie. if we can construct a term of type

isIso(f ) :=
∑

(g:B→A)

∑
(η:_)

∑
(ε:_)

∏
(x :A)

Id
(

f (ηx), ε(fx)
)
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The type of isomorphisms

Lemma

For any f : A→ B, the type isIso(f ) is a proposition. In particular,
the inverse g is unique, if it exists.

Definition (Type of isomorphisms from A to B)

Iso(A,B) :=
∑

f :A→B

isIso(f )

• There are other, equivalent definitions of isIso(f ).
• Isomorphisms of types are usually called “equivalences”.



Examples of isomorphic types

Example (Leibniz principle)

For any p : Id(a,b), the substitution function

substa,b(p) : C(a)→ C(b)

is an isomorphism with inverse substb,a(p−1).

• [True] is isomorphic to Nat
• propositions are isomorphic iff they are logically

equivalent



The elimination rule of the identity type

The Identity elimination rule says:

To define a function of type∏
(x ,y :A)

∏
(p:Id(x ,y))

C(x , y ,p)

it suffices to specify its image on (x , x , refl(x)).



The Univalence Axiom

Definition (From paths to isomorphisms)

idtoiso :
∏

A,B:U
Id(A,B)→ Iso(A,B)

(A,A, refl(A)) 7→ (λx .x , _)

Univalence Axiom

univalence :
∏

A B:U
isIso(idtoisoA,B)

In particular, Univalence gives a map backwards:

isotoidA,B : Iso(A,B)→ Id(A,B)



Consequences of Univalence

• Propositional extensionality

(P ↔ Q)→ Id(P,Q)

• Function extensionality:∏
x :A

IdB(fx ,gx)→ IdA→B(f ,g)

and its dependent variant

• Quotient types exist (cf. later)
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Categories in Univalent Foundations — Take I

A naïve definition of categories

A category C is given by
• a type C0 of objects
• for any a,b : C0, a type C(a,b) of morphisms
• operations: identity & composition

id :
∏
a:C0

C(a,a) (◦) :
∏

a,b,c:C0

C(b, c)× C(a,b)→ C(a, c)

• axioms: unitality & associativity for any suitable f ,g,h:

unital :
∏

a,b:C0,f :C(a,b)

(idb ◦ f  f )× (f ◦ ida  f )

assoc :
∏

a,b,c,d ,f ,g,h

(h ◦ g) ◦ f  h ◦ (g ◦ f )



Coherence for associativity – Mac Lane’s pentagon

Problem with above definition: two ways to associate a
composition of four morphisms from left to right:

(i ◦ h) ◦ (g ◦ f )

$$

((i ◦ h) ◦ g) ◦ f

44

��

i ◦ (h ◦ (g ◦ f ))

(i ◦ (h ◦ g)) ◦ f
**

i ◦ ((h ◦ g) ◦ f )

::

Would need to ask for higher coherence +3 , *4 etc
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Categories in Univalent Foundations — Take II

Definition (Category in UF)

A category C is given by
• a type C0 of objects

• for any a,b : C0, a set C(a,b) of morphisms
• operations: identity & composition

• axioms: unitality & associativity

For this definition of category, all the postulated paths are
trivially coherent.



Isomorphism in a category

Definition (Isomorphism in a category)

A morphism f : C(a,b) is an isomorphism if there are
•

g : C(b,a)

•
η : g ◦ f  ida ε : f ◦ g  idb

Put differently, we define

isIso(f ) :=
∑

g:C(b,a)

(
(g ◦ f  ida)× (f ◦ g  idb)

)



Isomorphism in a category II

Lemma

For any f : C(a,b), the type isIso(f ) is a proposition.

Definition (The type of isomorphisms)

Iso(a,b) :=
∑

f :C(a,b)

isIso(f )



What about categories as objects?

Definition (Functor)

A functor F from C to D is given by
• a map F0 : C0 → D0

• for any a,a′ : C0, a map Fa,a′ : C(a,a′)→ D(Fa,Fa′)
• preserving identity and composition

The category of categories?

• the type of functors from C to D does not form a set
• thus there is no category of categories



Isomorphisms of categories

Definition (Isomorphism of categories)

A functor F is an isomorphism of categories if

• F0 is an isomorphism of types and
• Fa,a′ is an isomorphism of types (a bijection) for any a,a′,

isIsoOfCats(F ) :=
(
. . .
)
×
( ∏

a,a′:C0

. . .
)



Isomorphism of categories II

Lemma

“Being an isomorphism of categories” is a proposition.

Definition (Type of isomorphisms of categories)

C ∼= D :=
∑

F :C→D
isIsoOfCats(F )



Natural transformations

Definition (Natural transformation)

Let F ,G : C → D be functors. A natural transformation
α : F → G is given by
• for any a : C0 a morphism αa : D(Fa,Ga) s.t.

• for any f : C(a,b), Gf ◦ αa  αb ◦ Ff

The type of natural transformations F → G is a set.

Definition (Functor category DC)

• objects: functors from C to D
• morphisms from F to G: natural transformations



Equivalence of categories

Definition (Left Adjoint)

A functor F : C → D is a left adjoint if there are
• G : D → C
• η : 1C → GF
• ε : FG→ 1D
• + higher coherence data.



Equivalence of categories

Definition (Equivalence of categories)

A left adjoint F is an equivalence of categories if η and ε are
isomorphisms.

Lemma

“F is an equivalence” is a proposition.

Definition

C ' D :=
∑

F :C→D
isEquivOfCats(F )
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From paths to isomorphisms

Definition (From paths to isomorphisms, univalent categories)

For objects a,b : C0 we define

idtoisoa,b : (a b)→ Iso(a,b)

refl(a) 7→ ida

We call the category C univalent if, for any objects a,b : C0,

idtoisoa,b : (a b)→ Iso(a,b)

is an isomorphism of types.



About univalent categories

• In a univalent category, isomorphic objects are equal.

• “C is univalent” is a proposition, written isUniv(C).

• Definition proposed by Hofmann & Streicher ’98, but not
pursued



Examples of univalent categories

• Set (follows from the Univalence Axiom)

• categories of algebraic structures (groups, rings,...)
• made precise by the Structure Identity Principle (P. Aczel)

• full subcategories of univalent categories

• functor category DC , if D is univalent



Some more examples of univalent categories

• a preorder, considered as a category, is univalent iff it is
antisymmetric

• if X is of h-level 3, then there is a univalent category with
X as objects and hom(x , y) := (x  y)

• if C is univalent, then the category of cones of shape
F : J → C is
 limits (limiting cones) in a univalent category are unique



Non-univalent categories

•
• ** •jj

• more generally, any chaotic category C with C(x , y) := 1
unless C0 is contractible

• any chaotic category C with an object c : C0 is equivalent
to the terminal category 1 := •
 a category can be equivalent to a univalent one without

being univalent itself



1 kind of sameness for univalent categories

Equality C  D
Isomorphism C ∼= D
Equivalence C ' D

Theorem

For univalent categories C and D, these are isomorphic as types.

Consequence

Every property of univalent categories definable in UF is
invariant under equivalence.
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Rezk completion

• “Being univalent” is a proposition

 Inclusion from univalent categories to categories

Theorem

The inclusion of univalent categories into categories has a left adjoint
(in bicategorical sense),

C 7→ Ĉ, the Rezk completion of C .



Rezk completion II

Any functor F : C → D with D univalent factors uniquely:

C ηC //

∀F

%%

Ĉ

∃!

��

D (univalent)

The functor ηC is the unit of the adjunction; it is
• fully faithful and

• essentially surjective.



Construction of the Rezk completion

• Ĉ := full image subcat. of SetC
op

of Yoneda embedding
• Ĉ is univalent

• let ηC : C → Ĉ be the Yoneda embedding (into Ĉ):
• fully faithful
• essentially surjective (by definition)

• precomposition _ ◦ H : CB → CA is an equivalence—and
hence an isomorphism—of categories if

• H is essentially surjective
• C is univalent

• the object function thus is an isomorphism of types

_ ◦ H : (CB)0 → (CA)0



Semantics of univalent categories

In Voevodsky’s sSET model,

• categories correspond to truncated Segal spaces
• univalent categories correspond to truncated complete

Segal spaces

Completion for Segal spaces was studied by Rezk:



Special case of Rezk completion: Quotienting

Specialise: category groupoid equivalence relation

Theorem (Univalent Foundations admits quotients)

Any map f : S → R such that s ∼ s′ =⇒ f (s) f (s′) factors
uniquely via Ŝ:

S
ηS //

∀

��

Ŝ

∃!

��

R

• More direct construction of set-level quotients by
Voevodsky: “type of equivalence classes”



Another example: the classifying space of a group

• Consider group G as category with one element

• B(G) := classifying space, ie. the space such that

Ω(B(G)) = G

• Construction of B(G) as space of torsors is actually the
process of Rezk completion

• Directly formalized in UF by Dan Grayson



Mechanization in Coq

Rezk Completion mechanized in Coq+UA+TypeInType

• approx. 4000 lines of code
• based on Voevodsky’s library “Foundations”

Design choices for the implementation

• Goal: make maths in UF accessible for mathematicians
 stick to that part of syntax with clear semantics

• Restriction to basic type constructors (
∏

,
∑

,. . . )
• Coercions and notations as in mathematical practice

• No automation: no type classes, no automatic tactics



Future work

Towards higher categories

• no internal definition of∞-categories

• 2 possible paths to higher categories:
• “manual” definition of n-categories for low n

• bootstrapping via enrichment in n-categories

Requires notion/theory of

• enriched category theory and univalence
• truncation of higher categories



Future work II

• Makkai: FOLDS (First Order Logic with Dependent Sorts)
as foundation for category theory

• Goal: only invariant properties definable (no equality on
objects)

• FOLDS embeds in type theory

• Suggested by Shulman: compare definition of univalent
categories in FOLDS style to the one above
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Some background . . .



A model of MLTT in simplicial sets

Types-as-spaces intuition is made precise by a model of MLTT:
• The category sSET of simplicial sets is Quillen-equivalent

to the category TOP of topological spaces.

• There is a model of MLTT in simplicial sets (Voevodsky).

• This model satisfies an additional property: univalence

• This suggests adding univalence as an additional axiom
(UA) to MLTT.

Remark

Traditional set-theoretic models of MLTT do not satisfy
univalence and thus are not models of MLTT + UA.



The groupoid interpretation of MLTT

Hofmann & Streicher: independence of UIP

Given a type A, one can not construct a term of type∏
(x :A)

∏
(p:Id(x ,x))

IdId(x ,x)(p, refl(x))



Non-trivial loop spaces

Interpretation of Hofmann & Streicher’s result

It is (equi-)consistent to have a type A with non-trivial path
spaces, e.g. a punctured disk.

A

x

p



Truncation

Propositional truncation

• to any type A associate type ‖A‖1
• ‖A‖1 is a proposition

• ‖A‖1 indicates whether A is inhabited or not, we have

A→ ‖A‖1 ¬A→ ¬‖A‖1

• ∃ n : Nat ,even(n) := ‖
∑

n:Nat even(n)‖1

Truncation to homotopy level n

• similar truncation can be defined for any n, A 7→ ‖A‖n
• ‖A‖n has only trivial paths above level n
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Equivalent definitions of isomorphism

Logically equivalent definition:

• One possible τ can be deduced from g, η and ε

 suffices to give g, η and ε to prove that f is an isomorphism

But the type of triples (g, η, ε) is not a proposition

Several equivalent definitions of isomorphism:

• “having a left- and a right-handed inverse”
• “having contractible fibers”, i.e. inverse image of each

point is a singleton
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